On ideals generated by monomials and one binomial

نویسنده

  • Margherita Barile
چکیده

We determine, in a polynomial ring over a field, the arithmetical rank of certain ideals generated by a set of monomials and one binomial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binomial Ideals David Eisenbud and Bernd Sturmfels

Introduction. It is notoriously difficult to deduce anything about the structure of an ideal or scheme by directly examining its defining polynomials. A notable exception is that of monomial ideals. Combined with techniques for making fiat degenerations of arbitrary ideals into monomial ideals (typically, using Gr6bner bases), the theory of monomial ideals becomes a useful tool for studying gen...

متن کامل

Minimal Systems of Binomial Generators and the Indispensable Complex of a Toric Ideal

Let A = {a1, . . . , am} ⊂ Z be a vector configuration and IA ⊂ K[x1, . . . , xm] its corresponding toric ideal. We completely determine the number of different minimal systems of binomial generators of IA. We also prove that generic toric ideals are generated by indispensable binomials. We associate to A a simplicial complex ∆ind(A). We show that the vertices of ∆ind(A) correspond to the indis...

متن کامل

Combinatorial Minimal Free Resolutions of Ideals with Monomial and Binomial Generators

In recent years, the combinatorial properties of monomials ideals [7, 10, 14] and binomial ideals [9, 10] have been widely studied. In particular, combinatorial interpretations of minimal free resolutions have been given in both cases. In this present work, we will generalize existing techniques to obtain two new results. The first is S[Λ]-resolutions of Λ-invariant submodules of k[Z] where Λ i...

متن کامل

Binomial edge ideals and rational normal scrolls

‎Let $X=left(‎ ‎begin{array}{llll}‎ ‎ x_1 & ldots & x_{n-1}& x_n\‎ ‎ x_2& ldots & x_n & x_{n+1}‎ ‎end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...

متن کامل

A combinatorial proof of Gotzmann's persistence theorem for monomial ideals

Gotzmann proved the persistence for minimal growth for ideals. His theorem is called Gotzmann’s persistence theorem. In this paper, based on the combinatorics on binomial coefficients, a simple combinatorial proof of Gotzmann’s persistence theorem in the special case of monomial ideals is given. Introduction Let K be an arbitrary field, R = K[x1, x2, . . . , xn] the polynomial ring with deg(xi)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005